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Section 4G – Quantitative Relationships:  Correlation and Regression 
 
Vocabulary 

Correlation:  Statistical analysis that determines if there is a relationship between two different quantitative 
                       variables. 

Regression:  Statistical analysis that involves finding the line or model that best fits a quantitative relationship,  
                       using the model to make predictions, and analyzing error in those predictions. 

Explanatory Variable (𝑥𝑥):  Another name for the x-variable or independent variable in a correlation study.   

Response Variable (𝑦𝑦):  Another name for the y-variable or dependent variable in a correlation study.   

Correlation Coefficient (𝑟𝑟):  A statistic between −1 and +1 that measures the strength and direction of linear  
                                                   relationships between two quantitative variables. 

R-squared (𝑟𝑟2):  Also called the coefficient of determination.  This statistic measures the percent of variability in  
                              the y-variable that can be explained by the linear relationship with the x-variable. 

Residual (𝑦𝑦 − 𝑦𝑦𝑦):  The vertical distance between the regression line and a point in the scatterplot. 

Standard Deviation of the Residual Errors (𝑠𝑠𝑒𝑒):  A statistic that measures how far points in a scatterplot are from  
                                                                                      the regression line on average and measures the average  
                                                                                      amount of prediction error. 

Slope (𝑏𝑏1):  The amount of increase or decrease in the y-variable for every one-unit increase in the x-variable. 

Y-Intercept (𝑏𝑏0):  The predicted y-value when the x-value is zero. 

Regression Line (𝑦𝑦� = 𝑏𝑏0 + 𝑏𝑏1𝑥𝑥):  Also called the line of best fit or the line of least squares.  This line minimizes  
                                                            the vertical distances between it and all the points in the scatterplot.     

Scatterplot: A graph for visualizing the relationship between two quantitative ordered pair variables.   
                       The ordered pairs (𝑥𝑥,𝑦𝑦) are plotted on the rectangular coordinate system. 

Residual Plot:  A graph that pairs the residuals with the x values.  This graph should be evenly spread out and  
                          not fan shaped. 

Histogram of the Residuals:  A graph showing the shape of the residuals.  This graph should be nearly normal and  
                                                   centered close to zero. 

Introduction 

Sometimes we want to know if two different quantitative variables are related to each other.  This kind of relationship 
study is difficult because the units are different.  We cannot directly compare the height of man in inches to his weight 
in pounds.  Inches and pounds are completely different.  Statisticians and mathematicians developed a type of 
analysis for this situation called “correlation and regression”.  The idea is to let one variable be X and the other 
variable be Y.  Then use ordered pair data to create a graph called a scatterplot and look for patterns.  The most 
common is a linear pattern (correlation).  If we see a linear pattern, we can also calculate the line that best fits the 
data and use this line to make predictions (regression).  

Choosing your variables 

It is important to determine which variable will be X and which variable will be Y.  In statistics, we call the  
X-variable the “explanatory variable” or the “independent variable”.  We call the Y-variable the “response variable” or 
“dependent variable”.  How do we chose?  Here are a couple key questions to ask yourself. 
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• Does one variable respond more than the other does? 
• Which variable is the focus of the study and the variable I might want to make predictions about? 

Let us look at some examples. 

 
Example:  Year (time) and unemployment rates in U.S.   

Ask yourself the following question.  Does one of the variables responds more than the other?  Does time fluctuate in 
response to the unemployment rate?  That does not sound right.  Time seems to go on no matter what happens with 
unemployment.  Do you think unemployment might fluctuate in response to time?  That seems more likely.  So we 
should let the explanatory variable X be time (years) and let the response variable y be unemployment rate.  
Unemployment responds to time, but not the other way around. 

 
Example:  The unemployment rate in U.S. and the national debt in the U.S. 

These variables respond to each other, so either variable could be the response variable Y.  In this case, pick the 
response variable (Y) to be the one you are most interested in (focus of the study) or the variable you may want to 
make predictions about.  If there is a relationship, then the Y-variable will be the variable you can make predictions 
about. 
 
Suppose the focus of your study and the variable you want to predict is the national debt.  Unemployment may just be 
one factor that may be related to the national debt.  If that is the case, you should make the national debt your 
response variable Y.  By default, that means that unemployment rate would be explanatory variable X.  

 
Correlation Graphs and Statistics with StatKey 

To study the relationship between two different quantitative variable, you will need ordered pair data.  For example, 
we will need the height and weight of the same men, or the unemployment rate and national debt of the same 
countries.  Decide which variable should be X and which variable should be Y.  The computer will then make ordered 
pairs from your data (X , Y) and plot all the points on the rectangular coordinate system.  This graph of all the ordered 
pairs is called a scatterplot. 

Example 

Suppose we want to study if the weights in pounds of the men in the health data is related to their heights in inches.  I 
am most interested in predicting the weights of men from their heights so I will let the weight be the response variable 
Y and height be the explanatory variable X.  Notice these are ordered pairs, since the heights and weights came from 
the same 40 men.  

To put the data into StatKey, you will want to open a fresh excel spreadsheet and place the two data sets side by 
side.  These two data sets are already next to each other in the health data, but in general, the data sets may not be.  
Copy the two columns of data together. 

 

Go to www.lock5stat.com and click on “StatKey”.  Under the “Descriptive Statistics and Graphs” menu, click on “two 
quantitative variables”.  Under the “edit data” tab, paste the height and weight data into StatKey.  The graph you see 
is the scatterplot.  Notice StatKey has placed the heights on the horizontal x-axis and the weights on the vertical y-
axis.  If it is backward, simply click the “switch variables” button.  It is also nice to check the “show regression line” 
box.  The regression line is the line that best fits the points in the scatterplot.  StatKey has also given us some 
statistics to help understand the relationship.  
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Analyzing scatterplots is an important skill.  In this graph, we see that the points seem to follow the linear pattern 
reasonably well and are reasonably close to the line.  Shorter men on the left tend to have lower weights than taller 
men on the right.  The line goes up from left to right.  We call this a “positive linear relationship”, or a “positive 
correlation”.  If the line goes down from left to right, we would call that a “negative linear relationship”, or a “negative 
correlation”.   
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We see that StatKey has given us the mean and standard deviation of each data set (heights and weights).  It has 
also given us the sample size (n) of 40.  There were 40 ordered pairs (40 heights and 40 weights from the same 40 
men). The number next to the word “Correlation” is 0.522.  This is called the “correlation coefficient” (r) and is an 
important statistic in measuring the direction and strength of the linear relationship.  Here are some general 
guidelines for understanding the correlation coefficient “r”.   

 

Correlation Coefficient (r)  

The correlation coefficient (r) is a number between -1 and +1 that measures the strength and direction of correlation.  
The correlation coefficient is an extremely difficult calculation that is very time consuming.  Like most statistics, it is 
better to use a computer program like StatKey or Statcato to calculate it.  

If the r is negative, the regression line will go down from left to right.  If you remember from algebra classes, this 
means the line has a negative slope.  If the r is positive, the regression line will go up from left to right.  This means 
the line has a positive slope.  The closer r is to +1 or −1, the stronger the relationship.  This means the points are very 
close to the line.  The closer r is to zero, the weaker the relationship.  The points are very far from the line.  It is 
important to always look at the scatterplot with the r-value.  Do not just look at an r-value without looking at the 
scatterplot.  These are not strict rules, but general guidelines.  A scatterplot with many points and a 0.7 r-value can 
mean something different from a scatterplot with only a few points and a 0.7 r-value.  

• If r is close to +1  (like r = +0.893)  Strong, Positive Correlation (line going up from left to right (positive slope) and 
the points in scatterplot are close to line) ,  
(r ≈ +0.6, +0.7, +0.8 , +0.9 usually indicate pretty strong positive correlation) 
 

• If r is close to −1  (like r = −0.916)   Strong Negative Correlation (line going down from left to right (negative slope) 
and the points in the scatterplot are close to the line) 
(r ≈ −0.6, −0.7, −0.8 , −0.9 usually indicate pretty strong negative correlation) 
 

• If r close to zero (like +0.037 or −0.009)  No linear correlation.  Points in the scatterplot do not follow any linear 
pattern.  There still could be a nonlinear curved pattern though. 
(r ≈ ±0.1, ±0.0 usually indicate no linear correlation) 
 

• If r ≈ ±0.2, ±0.3 usually indicate very weak linear correlation.  There is some linear pattern but the points are very far 
from the regression line. 
 

• If r ≈ ±0.4, ±0.5 usually indicate moderate linear correlation.  There is a linear pattern and points are only moderately 
close to the regression line. 

In the men’s height and weight example, the r-value was +0.522.  This tells us that there is a moderate positive linear 
relationship (or moderate positive correlation) between the height and weight of these men.   

Important Note:  Remember relationships or associations do not imply causation.  Just because there is a positive 
linear relationship between the height and weight of these men, it does not give me the right to say that the height 
causes a man to have a certain weight.  There are many confounding variables involved. 

Correlation ≠ Causation 
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Coefficient of Determination (𝑟𝑟2) 

If you square the r-value, you get the coefficient of determination.  This statistic tells us the percentage of variability in 
the response variable (Y) that can be explained by the explanatory variable (X).  In general, the higher the 𝑟𝑟2 
percentage, the stronger the relationship. 

StatKey does not calculate 𝑟𝑟2 for us, but it is not a difficult calculation.  If we square the r-value, we get the following. 

𝑟𝑟2 = (0.522)2 = 0.522 × 0.522 ≈ 0.272 or 27.2% 

So about 27.2% of the variability in the men’s weights can be explained by the relationship with their heights.   

Slope  

The slope of the regression line is an important statistic in correlation and regression.  It is a difficult calculation.  If 
you are wondering how it is calculated, here is the formula the computer used. 

Slope of the Regression Line = 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶𝐶 × 𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑌𝑌
𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷 𝑜𝑜𝑜𝑜 𝑋𝑋

 

The slope is the amount of increase of decrease in Y for every 1-unit increase in X (per unit of X).  If the slope is 
negative, than it is a “decrease” in Y and if the slope is positive, it is an “increase” in Y.   

In this problem, StatKey gave us the slope as 4.553.  Notice this is a positive slope so is indicating an increase in Y.  
The slope tells us that the weights of the men in the data set are increasing 4.553 pounds on average for every 1 inch 
taller they get.  Another way to say that is that the weights are increasing on average 4.552 pounds per inch.   

Y-intercept 

The Y-intercept is another difficult calculation.  In case you are wondering, here is the formula the computer used to 
calculate the Y-intercept.  You must calculate the slope first, before you can find the Y-intercept. 

Y-intercept of Regression Line = Mean of Y values − (𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆𝑆 × 𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 𝑜𝑜𝑜𝑜 𝑋𝑋 𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣𝑣) 

Y-intercepts can be difficult because they do not always make sense in context.  The definition of a Y-intercept is the 
predicted Y-value when X is zero.  StatKey calculated the Y-intercept for the height and weight data as −138.607.  So 
by definition, the predicted average height of men that are zero inches tall is negative 138.607 pounds.  That does not 
make sense.   

In many situations (like heights of men), it is impossible for the X to be zero.  Look at the scatterplot again for the 
height and weight data.  
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Notice that the points in the scatterplot have X values between about 61 inches and about 76 inches.  This is called 
the scope of the X-values.  The accuracy of this regression line is based on X values between about 61 and 76 
inches.  If we use this data to predict a man’s weight from his height, we should only use heights in the scope 
(between 61 and 76).  Going outside the scope is called extrapolation and can result in bad errors.  So let us get back 
to the Y-intercept.  The Y intercept is plugging in zero for X.  Notice zero is not in the scope of the X values, so is an 
extrapolation.  That means we will not expect the Y-intercept to make sense in this context.  The number is correct 
and is important for the regression line accuracy, but a man cannot have a height of zero.   

Some Y-intercepts do make sense in context.  Suppose we are looking at the number of months a company has 
been in business (X) and their monthly revenue in thousands of dollars (Y).  The Y-intercept may represent their 
starting capital at month zero or the amount of money the company had when they started their business.   

 
 

Regression Line and Predictions 

The regression line is also called the “line of best fit” or the “line of least squares”.  It minimizes the vertical distances 
between the points in the scatterplot and regression line itself.  If there is correlation between the variables, then the 
regression line is also a prediction formula.  If you plug in an X value into the equation for X, you can solve for Y and 
get a predicted Y value.  The regression line is represented by the following formula. 

Ŷ = (Y-intercept) + (Slope) X 

Plugging in our Y intercept (−138.607) and our slope (4.553), we get the following equation.   

Regression Line for Heights and Weights of mean in the health data:  Ŷ = −138.607 + 4.553 X  

The Ŷ refers to the “predicted Y value” which can be very different from the actual Y values in the data set.  You may 
also see computer programs put in the variable names for X and Ŷ.   

Weights in pounds = −138.607 + 4.553 (Heights in inches) 
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We said already that there was a moderate correlation between the heights and weights of these men.  So we should 
be able to use the formula to make a prediction.   

Use the regression line equation to predict the average weights of men that are 73 inches tall.  Remember Y 
represents weight and X represents height.  Simply plug in 73 for X and solve for Y.  Remember to follow the order of 
operations.  Multiply the X value by the slope first, before you add it to the Y-intercept.  Also, be aware of negative Y-
intercepts and negative slopes.   

Ŷ = −138.607 + 4.553 X 

Ŷ = −138.607 + 4.553 (73) 

Ŷ ≈ −138.607 + 332.369 

Ŷ ≈ +193.762 

Therefore, we predict that the average weight of men that are 73 inches tall is about 193.8 pounds.  Be careful of 
applying this prediction to all men.  This data came from sample data and may not reflect the heights of all men on 
earth.   

 

Calculating Correlation Graphs and Statistics with Statcato 

We can also make scatterplots and calculate correlation statistics with Statcato.  Copy and paste the men’s height 
and weight data into two columns of Statcato.  Go to the “statistics” menu, click on “correlation and regression” and 
then click on “linear”.  Click on the height to be the X-variable and the weight to be the Y-variable and then push “add 
series”.  Check the box that says “show scatterplot” and the box that says “show regression line”.  Statcato also has 
the capability of making residual plots.  These are more advanced kinds of graphs that are studied in regression 
analysis.  Check the box that says, “Show residual plots”, the box that says “residuals vs x-variable”, and the box that 
says “histogram of the residuals”.  Now push “OK”. 
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Some of the information in this printout refers to the correlation hypothesis test that we will study in chapter five.  
Notice Statcato gave us the correlation coefficient r of 0.522 and the coefficient of determination 𝑟𝑟2 = 0.2727 
(27.27%).  The slope is given as 𝑏𝑏1 = 4.5534 and the Y-intercept is given as 𝑏𝑏0 = −138.6070.  Notice these are the 
same numbers as StatKey.   

There is one statistic on the Statcato printout that was not on the StatKey printout that is important.   

Standard error of estimate = 22.7452 

This statistic is called the standard deviation of the residual errors (𝑠𝑠𝑒𝑒).  It measures the average vertical distance that 
points in the scatterplot are from the regression line.  It also tells us the average prediction error for predictions made 
in the scope of the X-values.  The units of the standard deviation of the residual errors is the same as the Y-variable 
(pounds).  This statistic tells us the following.   
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The points in the scatterplot are 22.7452 pounds on average from the regression line.   

If we use the regression line and the height of a man to predict the weight, our prediction could have an average error 
of 22.7452 pounds.   

Remember the prediction we made earlier.  We predicted that the average weight of men that are 73 inches tall is 
about 193.8 pounds.  Well that prediction could be off by 22.7452 pounds on average.    

A “residual” is the vertical distance that each point is from the regression line.  Suppose a point has an ordered pair ( 
X , Y ).  The point on the regression line with the same X value would have an ordered pair ( X , Ŷ ).  To calculate a 
residual the computer subtracts the predicted Ŷ value from the actual Y value of the point in the scatterplot.  This 
gives the vertical distance that point is from the regression line. 

Residual = Y − Ŷ 

The standard deviation of the residual errors is an average of the residuals.  The actual formula is shown below.  
Notice that we divide by n – 2 instead of n – 1 because there were two data sets.  This again is called the degrees of 
freedom and will be discuss more in later chapters.    

𝑠𝑠𝑒𝑒 = �∑(𝑦𝑦 − 𝑦𝑦𝑦)2

𝑛𝑛−2
 

 

 

Notice Statcato also gave us a scatterplot of the data with the regression line drawn.  The regression line formula is at 
the bottom of the graph.   

-------------------------------------------------------------------------------------------------------------------------------------------------------- 
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