Stat Support Activity: Other Common Quantitative Statistics

Notes: Other common quantitative statistics

- Variance $\left(s^{2}\right)$: A measure of spread for quantitative data that is the square of the typical distance from the mean.
- To calculate the variance: Square the standard deviation.
- Used in ANOVA testing (Analysis of Variance).
- Only accurate if the quantitative data is normally distributed (bell-shaped).
- Example: Normal data, standard deviation $=1.784 \mathrm{~cm}$. Variance $=(1.784)^{2}=$ $1.784 \times 1.784=3.182656$
- Mode: The number or numbers that appear most often in a quantitative data set.
- A measure of center or average used with bi-modal or multi-modal shaped data.
- A quantitative data set can be no mode, 1 mode, 2 modes, or multiple modes.
- To calculate the mode: Look for the data value that appears most often. It helps to put the data in order from smallest to largest.
- Example: 1,2,3,3,4,5,6,7,7,8,10 (There are two modes 3 and 7.)

O Example: $13,14,16,17,18,19,20$ (There is no mode since all data values appear the same number of times.)
○ Example: $0,1.5,1.5,2.0,2.4,2.9,2.9,2.9,3.1,3.1$ (There is one mode at 2.9)

- Max: The largest value in a quantitative data set.
- Measure of Position.
- Example: $13,14,16,17,18,19,20$ (Max is 20.)
- Min: The smallest value in a quantitative data set.
- Measure of Position.
- Example: $13,14,16,17,18,19,20$ (Min is 13.)
- Range: A quick, easy to calculate, measure of non-typical spread.
- Based on outliers, so does not give us typical values in the data set.
- Better to use standard deviation (normal data) or IQR (non-normal data) for spread.
- To calculate Range: Max - Min.
- Example: 3,14,16,17,18,19,37 (Min = 3, $\operatorname{Max}=37$, Range $=37-3=34$)
- Midrange: A quick, easy to calculate, measure of center or average.
- Half way between the max and min.
- Based on outliers, so is often not very accurate.
- Better to use the median average (non-normal data) or mean average (normal data).
- To calculate Midrange: (Max + Min) $\div 2$
- Example: 3,14,16,17,18,19,37 (Min = 3, Max = 37, Midrange $=(37+3) \div 2=40 \div 2=20)$

Stat Support Activity: Other Common Quantitative Statistics

Problems

1.

Weights Data (kilograms):
$1.4,1.75,1.9,2.24,2.5,2.8,3.05,3.21,3.3,3.52,3.6,3.87,4.1,4.37$
a) Find the Mode or Modes.
b) Find the Max.
c) Find the Min.
d) Calculate the Range.
e) Calculate the Midrange.
2.

Temperature Data (degrees Fahrenheit):
$42,44,51,52,53,53,56,63,64,68,72,72,72,79,81,81,85$
a) Find the Mode or Modes.
a) Find the Max.
b) Find the Min.
c) Calculate the Range.
d) Calculate the Midrange.

Stat Support Activity: Other Common Quantitative Statistics

3.

Here is a quantitative data set describing the milligrams of potassium per serving in cereals. The data has already been put in order from smallest to largest. Here are the summary statistics calculated from StatKey.

Stat Support Activity: Other Common Quantitative Statistics

4.

Here is a quantitative data set listing the weights of some COC students. The data has already been put in order from smallest to largest. Here are the summary statistics calculated from StatKey.

Weight (in pounds) 103 106 109		Summary Statistics	
		Statistic	Value
		Sample Size	23
		Mean	154.870
110		Standard Deviation	44.145
114		Minimum	103
120 120		Q ${ }_{1}$	120.000
125		Median	149.000
135		Q_{3}	176.000
135		Maximum	270
144			
149			
155	a)	Find the Mode or	
155	b)	Find the Max.	
165	c)	Find the Min.	
170	d)	Calculate the Ran	
172	e)	Calculate the Mid	
180	f)	Use the Standard	calculate
185			
190			
200			
250			
270			

