Practice Problems Section 4F (updated)

(#1-10) Use the number of rows (r) and the number of columns (c) in the contingency table to calculate the degrees of freedom (r-1)x(c-1). Go to StatKey at www.lock5stat.com. Under the "Theoretical Distributions" menu, click on χ^2 . Enter the degrees of freedom you calculated and click "Right Tail" and type the significance level in the upper right box. The lower right box will now be the critical value and show where the right tail begins. Use the given χ^2 Test Statistic and the calculated Critical Value to fill out the table. Assume the test statistics came from unbiased data passing conditions.

	χ^2 -test	#	#	Degrees	Significance	Critical	Does the	Do the	Does
	stat	of	of	of	Level	Value?	χ^2 -test	observed	sample
		rows	columns	Freedom	Proportion	(Bottom	statistic fall	sample	data
		(r)	(c)	(r – 1)	(put in	Right	in the right	counts	significantly
				×	upper	Tail box	tail	significantly	disagree
				(c – 1)	right	in	determined	disagree	with H_0 ?
					tail)	StatKey)	by the	with the	
							critical	expected	
							value?	counts?	
1.	+1.573	2	4		0.1				
2.	+6.226	3	4		0.01				
3.	+2.144	2	3		0.05				
4.	+3.415	3	3		0.01				
5.	+13.718	3	5		0.05				
6.	+0.972	2	2		0.1				
7.	+31.652	4	7		0.05				
8.	+11.185	3	6		0.1				
9.	+25.443	5	3		0.01				
10.	+1.133	4	2		0.05				

(#11-20) Use the number of rows (r) and the number of columns (c) in the contingency table to calculate the degrees of freedom $(r-1)\times(c-1)$. Go to StatKey at www.lock5stat.com. Under the "Theoretical Distributions" menu, click on χ^2 . Enter the degrees of freedom you calculated and click "Right Tail" and type the χ^2 test statistic in the bottom right box. The upper right box will now be the P-value proportion. Use the calculated P-values and corresponding significance levels to fill out the table. Assume the P-values came from unbiased data passing conditions.

	χ^2 -test	#	#	Degrees	P-value	P-	Sig.	Is the	If H_0 is	Reject
	stat	of	of	of	Proportion?	value	Level	P-value	true, could	H_0 or
		rows	columns	Freedom	(Тор	%	%	lower	the	Fail to
		(r)	(c)	(r – 1)	RightTail			than	sample	reject
				×	box in			sig.	data occur	H_0 ?
				(c – 1)	StatKey)			level or	by random	
								higher?	chance or	
									is it	
									unlikely?	
11.	+1.573	2	4				10%			
12.	+6.226	3	4				1%			
13.	+2.144	2	3				5%			
14.	+3.415	3	3				1%			
15.	+13.718	3	5				5%			
16.	+0.972	2	2				10%			
17.	+31.652	4	7				5%			
18.	+11.185	3	6				10%			
19.	+25.443	5	3				1%			
20.	+1.133	4	2				5%			

- 21. If we have two raw categorical data sets, what must we click on in Statcato to perform a categorical association test?
- 22. If we have summary counts organized in a contingency table, what must we click on in Statcato to perform a categorical association test?
- 23. What is the sentence explaining the Chi-Square test statistic?
- 24. What are the conditions for a categorical association test?
- 25. How are the expected counts calculated in a categorical association test?
- 26. If the expected counts from the null hypothesis are significantly different from the observed sample counts, describe the effect on the Chi-Squared test statistic.
- 27. If the expected counts from the null hypothesis are close to the observed sample counts, describe the effect on the Chi-Squared test statistic.
- (#28-31) Directions: For each of the following problems, use the Statcato printout provided to answer the following questions.
- a) Write the null and alternative hypothesis. Make sure to label which one is the claim.
- b) Check the assumptions for the categorical association test.
- c) What is the Chi-squared test statistic? Write a sentence to explain the test statistic.
- d) Does the test statistic fall in the tail determined by the critical value?
- e) Does the sample data significantly disagree with the null hypothesis? Explain your answer.
- f) Are the observed counts significantly different from the expected counts? Explain your answer.
- g) What is the P-value? Write a sentence to explain the P-value.
- h) Compare the P-value to the significance level. Should we reject the null hypothesis or fail to reject the null hypothesis? Explain your answer.
- *i)* If the null hypothesis was true, could the sample data or more extreme have occurred by sampling variability or is it unlikely to be sampling variability? Explain your answer.
- j) Write a conclusion for the test addressing evidence and the claim. Explain your conclusion in non-technical language.
- k) Are the categories related or not? Explain your answer.

28. A random sample of male college students were asked their major. Later, a random sample of female college students were asked their major. The goal of the study was to show that gender is not related to major. Use a 5% significance level and the Statcato printout below to answer the questions given above.

Chi-Square Test: Contingency Table:

	Business	English	History	Music	Biology	Math	Total
Female	89.0 (97.30) [0.71]	71.0 (62.45) [1.17]	62.0 (58.58) [0.20]	(48.89)	56.0 (57.12) [0.02]	9.0 (10.65) [0.26]	335.0
Male	112.0 (103.70) [0.67]	58.0 (66.55) [1.10]	59.0 (62.42) [0.19]		62.0 (60.88) [0.02]	13.0 (11.35) [0.24]	357.0
Total	201.0	129.0	121.0	101.0	118.0	22.0	692.0

(expected frequency), [test statistic contribution]

Significance Level	DOF	x ²	Critical value	p-Value
0.05	5	4.6014	11.0705	0.4664

29. A random sample of adults were asked their blood type and Rh status. (Blood tests were provided for those that did not know their blood type and Rh status.) The goal of the study was to show that blood type is related to Rh status (dependent). Use a 10% significance level and the Statcato printout below to answer the questions given above.

Chi-Square Test: Contingency Table:

	Type A	Туре В	Туре АВ	Туре О	Total
Rh+	35.0 (36.03) [0.03]	24.0 (23.0) [0.04]	11.0 (16.1) [1.62]	91.0 (85.87) [0.31]	161.0
Rh-	12.0 (10.97) [0.10]	6.0 (7.0) [0.14]	10.0 (4.9) [5.31]	21.0 (26.13) [1.01]	49.0
Total	47.0	30.0	21.0	112.0	210.0

(expected frequency), [test statistic contribution]

Significance Level	DOF	x ²	Critical value	p-Value
0.10	3	8.5522	6.2514	0.0359

30. A hospital wanted to determine if the age of a patient is not related to what part of the hospital they were in. They took a random sample of patients that have visited their hospital and determined both their age and the part of the hospital. The ages were broken up into age groups. Use a 1% significance level and the Statcato printout below to answer the questions given above.

Chi-Square Test: Contingency Table:

	Med/Surg	ICU	SDS	ER	Total
18-35 years old	19.0 (19.12) [7.98 · 10 ⁻⁴]	4.0 (11.47) [4.87]	25.0 (17.85) [2.87]	16.0 (15.55) [0.01]	64.0
36-49 years old	27.0 (19.42) [2.96]	7.0 (11.65) [1.86]	22.0 (18.13) [0.83]	9.0 (15.80) [2.92]	65.0
50-64 years old	17.0 (18.53) [0.13]	13.0 (11.12) [0.32]	15.0 (17.29) [0.30]	17.0 (15.07) [0.25]	62.0
65+ years old	12.0 (17.93) [1.96]	21.0 (10.76) [9.75]	8.0 (16.73) [4.56]	19.0 (14.58) [1.34]	60.0
Total	75.0	45.0	70.0	61.0	251.0

(expected frequency), [test statistic contribution]

Significance Level	DOF	x ²	Critical value	p-Value
0.01	9	34.9208	21.666	6.153 · 10 ⁻⁵

31. A random sample of American adults was taken and their health and education status obtained. Test to test the claim that health and education are related. Use a 5% significance level and the Statcato printout below to answer the questions given above.

Chi-Square Test: Contingency Table:

	Excellent Health	Good Health	Fair Health	Poor Health	Total
Less Than High School	72.0 (148.64) [39.51]	202.0 (249.76) [9.13]	199.0 (106.91) [79.33]	62.0 (29.70) [35.14]	535.0
High School Diploma	465.0 (502.31) [2.77]	877.0 (844.04) [1.29]	358.0 (361.29) [0.03]	108.0 (100.36) [0.58]	1808.0
Some College / Associates Degree	80.0 (77.24) [0.10]	138.0 (129.78) [0.52]	49.0 (55.55) [0.77]	11.0 (15.43) [1.27]	278.0
Bachelor's Degree	229.0 (161.42) [28.30]	276.0 (271.23) [0.08]	64.0 (116.10) [23.38]	12.0 (32.25) [12.72]	581.0
Graduate Degree	130.0 (86.40) [22.00]	147.0 (145.19) [0.02]	32.0 (62.15) [14.62]	2.0 (17.26) [13.49]	311.0
Total	976.0	1640.0	702.0	195.0	3513.0

(expected frequency), [test statistic contribution]

Significance Level	DOF	x ²	Critical value	p-Value
0.05	12	285.0610	21.0261	0

(#32-35) Directions: Use StatKey at www.lock5stat.com to simulate the following chi-squared categorical association tests. Go to the "More Advanced Randomization Tests" menu at the bottom of the StatKey page. Click on the button that says, " χ^2 Test for Association". Click on "Edit Data" and type in the contingency table provided. Click on "Generate 1000 Samples" a few times to create the simulated sampling distribution and answer the following questions.

- a) Write the null and alternative hypothesis. Make sure to label which one is the claim.
- b) Check the assumptions for the categorical association test. Assume the data was collected randomly. Under "Original Sample", click on "Show Details" to see the expected counts.
- c) Use the formula df = (r 1)(c 1) to calculate the degrees of freedom. "r" is the number of rows and "c" is the number of columns not counting the totals.
- d) What is the Chi-squared test statistic? Write a sentence to explain the test statistic.
- e) Put the significance level proportion in the right tail proportion to calculate the critical value. What is the critical value? (Answers will vary slightly.) Does the original sample χ^2 test statistic fall in the tail determined by the critical value?
- f) Does the sample data significantly disagree with the null hypothesis? Explain your answer.
- g) Are the observed counts significantly different from the expected counts? Explain your answer.
- h) Put the original sample test χ^2 test statistic in the bottom box in the simulation to calculate the P-value. What is the P-value? (Answers will vary slightly.) Write a sentence to explain the P-value.
- i) Compare the P-value to the significance level. Should we reject the null hypothesis or fail to reject the null hypothesis? Explain your answer.
- j) If the null hypothesis was true, could the sample data or more extreme have occurred by sampling variability or is it unlikely to be sampling variability? Explain your answer.
- k) Write a conclusion for the test addressing evidence and the claim. Explain your conclusion in non-technical language.
- I) Are the categories related or not? Explain your answer.
- 32. We want to know if the state a home is built in is related to the size of the home. A random sample of homes in the U.S was taken. Click on "Edit Data" in StatKey and type in the following contingency table. Do not forget to include a space after the commas. Use a 5% significance level and randomized simulation to test the claim that the state is not related to size of the home.

[blank], CA, NJ, NY, PA

Large, 7, 6, 7, 3

Small, 23, 24, 23, 27

33. Open the "Car Data" at www.matt-teachout.org. Copy and paste the "Country" and "Cylinders" columns next to each other in a new Excel spreadsheet. Then copy the two columns together. Click on "Edit Data" in StatKey and paste the two columns into StatKey. Use a 1% significance level to test the claim that the country a car is made in is related to the cylinders. Answer the questions above.

34. We want to show that gender is related to getting an award. A random sample of people that won famous awards in the Olympic, Academia, and Nobel was taken and their gender was noted. Click on "Edit Data" in StatKey and type in the following contingency table. Do not forget to include a space after the commas. Use a 10% significance level and randomized simulation to test the claim that awards are related to gender.

[blank], Olympic, Academy, Nobel

Male, 109, 11, 73

Female, 73, 20, 76

35. Open the "Math 140 Fall 2015 Survey Data" at www.matt-teachout.org. Copy and paste the "Tattoo" and "Favorite Social Media" columns next to each other in a new Excel spreadsheet. Then copy the two columns together. Click on "Edit Data" in StatKey and paste the two columns into StatKey. Use a 5% significance level to test the claim that having a tattoo or not is not related to social media. Answer the questions above.
