Problems

1. Comparing cotinine levels (second hand smoke measure).

Sample 1 Cotinine Levels (does not live with smoker): $n_1=90$, $\bar{x}_1=7.2$, $s_1=5.8$ Sample 2 Cotinine Levels (lives with smoker): $n_2=85$, $\bar{x}_2=28.5$, $s_2=11.4$

- a) Calculate the sample mean difference $\bar{x}_1 \bar{x}_2$.
- b) Calculate the standard error using the following formula:

Standard Error =
$$\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$
 =

c) Calculate the T-test statistic by dividing answer to part (a) by the answer to part (b).

$$T - test \ statistic = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} = \frac{sample \ mean \ difference}{Standard \ error}$$

d) T – test statistic sentence: "The sample mean cotinine for those that do not live with smokers was _____ standard errors (above or below) the sample mean cotinine for those that do live with smokers." (Note: Use "above" if the test statistic is positive. Use "below" if the test statistic is negative.)

2. Comparing weights of male German Shephards and male Doberman Pinchers.

	N	Mean	Stdev
German Shep Sample 1	20	112.0	28.0
Doberman Sample 2	14	107.0	24.0

- a) Calculate the sample mean difference $\bar{x}_1 \bar{x}_2$.
- b) Calculate the standard error using the following formula:

Standard Error =
$$\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$
 =

c) Calculate the T-test statistic by dividing answer to part (a) by the answer to part (b).

$$T - \text{test statistic} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} = \frac{sample \ mean \ difference}{Standard \ error}$$

d) T – test statistic sentence: "The sample mean weight for German Shephards was ______ standard errors (above or below) the sample mean for Doberman Pinchers." (Note: Use "above" if the test statistic is positive. Use "below" if the test statistic is negative.)

3. Comparing mean average gas mileage (miles per gallon) for cars made in USA verses cars made in other countries.

	N	Mean	Stdev
Population 1 USA mpg	22	22.995	6.054
Population 2 Other Country mpg	16	27.188	6.601

- a) Calculate the sample mean difference $\bar{x}_1 \bar{x}_2$.
- b) Calculate the standard error using the following formula:

Standard Error =
$$\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$
 =

c) Calculate the T-test statistic by dividing answer to part (a) by the answer to part (b).

$$\mathsf{T-test\ statistic} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} = \frac{sample\ mean\ difference}{Standard\ error}$$

d) T – test statistic sentence: "The sample mean gas mileage for cars made in the USA was _____ standard errors (above or below) the sample mean gas mileage for cars made in other countries." (Note: Use "above" if the test statistic is positive. Use "below" if the test statistic is negative.)

4. Comparing mean average horsepower for cars made in USA verses cars made in other countries.

	N	Mean	Stdev
Population 1 USA car horsepower	22	110.182	26.383
Population 2 Other Country car horsepower	16	90.125	22.408

- a) Calculate the sample mean difference $\bar{x}_1 \bar{x}_2$.
- b) Calculate the standard error using the following formula:

Standard Error =
$$\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}$$
 =

c) Calculate the T-test statistic by dividing answer to part (a) by the answer to part (b).

$$T-\text{test statistic} = \frac{(\bar{x}_1 - \bar{x}_2)}{\sqrt{\left(\frac{s_1^2}{n_1} + \frac{s_2^2}{n_2}\right)}} = \frac{\text{sample mean difference}}{\text{Standard error}}$$

d) T – test statistic sentence: "The sample mean horsepower for cars made in the USA was _____ standard errors (above or below) the sample mean horsepower for cars made in other countries." (Note: Use "above" if the test statistic is positive. Use "below" if the test statistic is negative.)