Notes

- Regression Line ("Line of Best Fit" or "Line of Least Squares") is the line that best fits ordered pair quantitative data.
- Regression Line Equation: $\hat{y} = b_0 + (b_1 \times x)$ where b_1 is the slope and b_0 is the y-intercept. Note: Replace b_1 and b_0 with numbers but leave the \hat{y} and the x in the equation.
- Slope (*b*₁) is the amount of increase or decrease in the response variable (y) per unit of x.
- Slope Equation: $b_1 = \frac{(r \times s_y)}{s_x}$ where r is the correlation coefficient, s_x is the standard deviation of the explanatory (x) column of data, and s_y is the standard deviation of the response (y) column of data.
- Y-intercept Equation: $b_0 = \overline{y} (b_1 \times \overline{x})$ where b_1 is the slope, \overline{x} is the mean average of the explanatory (x) column of data, and \overline{y} is the mean average of the response (y) column of data.

Directions: Fill out the following table to calculate the slope and y-intercept for the regression line and then write the regression line equation. Round the slope and y-intercept to the thousandths place (3 numbers to the right of the decimal).

	Correlation	Standard	Standard	Slope	Mean	Mean	Y-intercept	Regression
	Coefficient	Deviation	Deviation	$(b_1) =$	of x	of y	(b ₀) =	Line
	(r)	of x	of y	$(\mathbf{r} \times \mathbf{s}_y)$	column	column	$\overline{y} - (b_1 \times \overline{x})$	Equation
		column	column	S _x	(\overline{x})	(\overline{y})		$\widehat{y} = b_0 + (b_1 \times x)$
		(s_x)	(s_y)	U _X				
1.	0.961	0.313	4.632		0.941	12.103		
2.	-0.575	1.288	0.341		6.591	0.527		
3.	0.991	43.844	10.209		133.0	68.357		
4.	-0.358	0.099	0.054		0.763	0.453		
5.	0.348	2.290	2.607		6.778	6.333		
6.	-0.711	2.182	17.433		13.4	255.6		
7.	0.751	69.897	155.297		77.404	280.912		
8.	-0.649	4.116	1.792		21.725	10.388		